In computer architecture the memory hierarchy is a concept used to discuss performance issues in computer architectural design, algorithm predictions, and lower level programming constructs involving locality of reference. The memory hierarchy in computer storage separates each of its levels based on response time. Since response time, complexity, and capacity are related, the levels may also be distinguished by their performance and controlling technologies.
Designing for high performance requires considering the restrictions of the memory hierarchy, i.e. the size and capabilities of each component. Each of the various components can be viewed as part of a hierarchy of memories (m1,m2,...,mn) in which each member mi is typically smaller and faster than the next highest member mi+1 of the hierarchy. To limit waiting by higher levels, a lower level will respond by filling a buffer and then signaling to activate the transfer.
There are four major storage levels.
This is a general memory hierarchy structuring. Many other structures are useful. For example, a paging algorithm may be considered as a level for virtual memory when designing a computer architecture, and one can include a level of nearline storage between online and offline storage.
The number of levels in the memory hierarchy and the performance at each level has increased over time. For example, the memory hierarchy of an Intel Haswell Mobile processor circa 2013 is:
The lower levels of the hierarchy – from disks downwards – are also known as tiered storage. The formal distinction between online, nearline, and offline storage is:
For example, always-on spinning disks are online, while spinning disks that spin-down, such as massive array of idle disk (MAID), are nearline. Removable media such as tape cartridges that can be automatically loaded, as in a tape library, are nearline, while cartridges that must be manually loaded are offline.
Most modern CPUs are so fast that for most program workloads, the is the locality of reference of memory accesses and the efficiency of the caching and memory transfer between different levels of the hierarchy. As a result, the CPU spends much of its time idling, waiting for memory I/O to complete. This is sometimes called the space cost, as a larger memory object is more likely to overflow a small/fast level and require use of a larger/slower level. The resulting load on memory use is known as pressure (respectively register pressure, cache pressure, and (main) memory pressure). Terms for data being missing from a higher level and needing to be fetched from a lower level are, respectively: register spilling (due to register pressure: register to cache), cache miss (cache to main memory), and (hard) page fault (main memory to disk).