Alfred Edward "Ted" Ringwood | |
---|---|
Born |
Kew, Melbourne, Australia |
April 19, 1930
Died | November 12, 1993 | (aged 63)
Fields | Geochemistry, Petrology, Planetology |
Institutions | Australian National University |
Alma mater | Melbourne University |
Thesis | Studies in geochemistry (1956) |
Academic advisors | Arthur Gaskin, Francis Birch |
Influences | Victor Moritz Goldschmidt, |
Notable awards | Clarke Medal (1992) V. M. Goldschmidt Award (1991) Wollaston Medal (1988) William Bowie Medal (1974) |
Notes | |
Alfred Edward "Ted" Ringwood FRS (19 April 1930 – 12 November 1993) was an Australian experimental geophysicist and geochemist, and the 1988 recipient of the Wollaston Medal.
The mineral ringwoodite is named after him.
Ringwood was born in Kew, only child of Alfred Edward Ringwood. He attended Hawthorn West State School where he played cricket and Australian Rules football. In 1943 he was successful in gaining a scholarship to Geelong Grammar School where he boarded. On matriculation, he enrolled in Geology a science degree at the University of Melbourne where he held a Commonwealth Government Scholarship, and was awarded a resident scholarship at Trinity College. He represented the college and the University in football. He obtained First Class Honours degree in Geology and began a MSc degree in field-mapping and petrology of the Devonian Snowy River volcanics of northeastern Victoria, graduating with Honours in 1953. Ringwood then undertook a PhD, beginning an experimental study about the origin of metalliferous ore deposits, but later changed his research topic so as to apply geochemistry to an understanding of the structure of the Earth, in particular the mineralogical constitution of the Earth's mantle.
In the late 1950s and 1960s Ringwood worked on germanates. He discovered that they served as low-pressure analogue to high-pressure silicates. With this insight he was able to predict that the phase changes of the mantle minerals olivine and pyroxene should occur in the Transition Zone. At the Australian National University he began experimental study of silicates at high pressure, and in 1959 demonstrated that the iron end-member of olivine indeed transformed to the denser spinel structure, as did numerous germanate and germanate-silicate solid solutions. In 1966, Ringwood and Alan Major, the technical officer who worked with him from 1964 to 1993, synthesized the spinel form of (Mg,Fe)2SiO4, Also in 1966, the transformation of pure forsterite (Mg2SiO4) to spinel-like phase was achieved.