Technology management is a set of management disciplines that allows organizations to manage their technological fundamentals to create competitive advantage. Typical concepts used in technology management are:
The role of the technology management function in an organization is to understand the value of certain technology for the organization. Continuous development of technology is valuable as long as there is a value for the customer and therefore the technology management function in an organization should be able to argue when to invest on technology development and when to withdraw.
Technology management can also be defined as the integrated planning, design, optimization, operation and control of technological products, processes and services, a better definition would be the management of the use of technology for human advantage.
The Association of Technology, Management, and Applied Engineering defines technology management as the field concerned with the supervision of personnel across the technical spectrum and a wide variety of complex technological systems. Technology management programs typically include instruction in production and operations management, project management, computer applications, quality control, safety and health issues, statistics, and general management principles.
Perhaps the most authoritative input to our understanding of technology is the diffusion of innovations theory developed in the first half of the twentieth century. It suggests that all innovations follow a similar diffusion pattern – best known today in the form of an "s" curve though originally based upon the concept of a standard distribution of adopters. In broad terms the "s" curve suggests four phases of a technology life cycle – emerging, growth, mature and aging.
These four phases are coupled to increasing levels of acceptance of an innovation or, in our case a new technology. In recent times for many technologies an inverse curve – which corresponds to a declining cost per unit – has been postulated. This may not prove to be universally true though for information technology where much of the cost is in the initial phase it has been a reasonable expectation.
The second major contribution to this area is the Carnegie Mellon Capability Maturity Model. This model proposes that a series of progressive capabilities can be quantified through a set of threshold tests. These tests determine repeatability, definition, management and optimization. The model suggests that any organization has to master one level before being able to proceed to the next.