Some of the technological applications of superconductivity include:
The biggest application for superconductivity is in producing the large-volume, stable, and high-intensity magnetic fields required for MRI and NMR. This represents a multi-billion-US$ market for companies such as Oxford Instruments and Siemens. The magnets typically use low-temperature superconductors (LTS) because high-temperature superconductors are not yet cheap enough to cost-effectively deliver the high, stable, and large-volume fields required, notwithstanding the need to cool LTS instruments to liquid helium temperatures. Superconductors are also used in high field scientific magnets.
Particle accelerators such as the Large Hadron Collider can include many high field electromagnets requiring large quantities of LTS. To construct the LHC magnets required more than 28 percent of the world’s niobium-titanium wire production for five years, with large quantities of NbTi also used in the magnets for the LHC’s huge experiment detectors.
A small number of magnetic fusion devices (mostly tokamaks) have used SC coils. The current construction of ITER has required unprecedented amounts of LTS (eg. 500 tonnes, causing a 7 fold increase in worlds annual production capacity).
The commercial applications so far for high temperature superconductors (HTS) have been limited.
HTS can superconduct at temperatures above the boiling point of liquid nitrogen, which makes them cheaper to cool than low temperature superconductors (LTS). However, the problem with HTS technology is that the currently known high temperature superconductors are brittle ceramics which are expensive to manufacture and not easily formed into wires or other useful shapes. Therefore the applications for HTS have been where it has some other intrinsic advantage, e.g. in
HTS has application in scientific and industrial magnets, including use in NMR and MRI systems. Commercial systems are now available in each category.