*** Welcome to piglix ***

Task allocation and partitioning of social insects


Task allocation and partitioning refers to the way that tasks are chosen, assigned, subdivided, and coordinated (here, within a single colony of social insects). Closely associated are issues of communication that enable these actions to occur. This entry focuses exclusively on social insects. For information on human task allocation and partitioning, see division of labour, task analysis, and workflow.

Social living provides a multitude of advantages to its practitioners, including predation risk reduction, environmental buffering, food procurement, and possible mating advantages. The most advanced form of sociality is eusociality, characterized by overlapping generations, cooperative care of the young, and reproductive division of labor, which includes sterility or near-sterility of the overwhelming majority of colony members. With few exceptions, all the practitioners of eusociality are insects of the orders Hymenoptera (ants, bees, and wasps), Isoptera (termites), Thysanoptera (thrips), and Hemiptera (aphids). Social insects have been extraordinarily successful ecologically and evolutionarily. This success has at its most pronounced produced colonies 1) having a persistence many times the lifespan of most individuals of the colony, and 2) numbering thousands or even millions of individuals. Social insects can exhibit division of labor with respect to non-reproductive tasks, in addition to the aforementioned reproductive one. In some cases this takes the form of markedly different, alternative morphological development (polymorphism), as in the case of soldier castes in ants, termites, thrips, and aphids, while in other cases it is age-based (temporal polyethism), as with honey bee foragers, who are the oldest members of the colony (with the exception of the queen). Evolutionary biologists are still debating the fitness-advantage gained by social insects due to their advanced division of labor and task allocation, but hypotheses include: increased resilience against a fluctuating environment, reduced energy costs of continuously switching tasks, increased longevity of the colony as a whole, or reduced rate of pathogen transmission. Division of labor, large colony sizes, temporally-changing colony needs, and the value of adaptability and efficiency under Darwinian competition, all form a theoretical basis favoring the existence of evolved communication in social insects. Beyond the rationale, there is well-documented empirical evidence of communication related to tasks; examples include the waggle dance of honey bee foragers, trail marking by ant foragers such as the red harvester ants, and the propagation via pheromones of an alarm state in Africanized honey bees.


...
Wikipedia

...