Tandem affinity purification (TAP) is a purification technique for studying protein–protein interactions. It involves creating a fusion protein with a designed piece, the TAP tag, on the end.
In the original version of the technique, the protein of interest with the TAP tag first binds to beads coated with IgG, the TAP tag is then broken apart by an enzyme, and finally a different part of the TAP tag binds reversibly to beads of a different type. After the protein of interest has been washed through two affinity columns, it can be examined for binding partners.
The original TAP method involves the fusion of the TAP tag to the C-terminus of the protein under study. The TAP tag consists of calmodulin binding peptide (CBP) from the N-terminal, followed by tobacco etch virus protease (TEV protease) cleavage site and Protein A, which binds tightly to IgG. The relative order of the modules of the tag is important because Protein A needs to be at the extreme end of the fusion protein so that the entire complex can be retrieved using an IgG matrix.
Many other tag combinations have been proposed since the TAP principle was first published.
This tag is also known as the C-terminal TAP tag because an N-terminal version is also available. However, the method to be described assumes the use of a C-terminal tag, although the principle behind the method is still the same.
TAP tagging was invented by a research team working in the European Molecular Biology Laboratory at late 1990s (Rigaut et al., 1999, Puig et al.,2001) and proposed as a new tool for proteome exploration. It was used by the team to characterize several protein complexes (Rigaut et al., 1999, Caspary et al. 1999, Bouveret et al., 2000, Puig et al., 2001). The first large-scale application of this technique was in 2002, in which the research team worked in collaboration with scientists of the proteomics company Cellzome to develop a visual map of the interaction of more than 230 multi-protein complexes in a yeast cell by systematically tagging the TAP tag to each protein. The first successful report of using TAP tag technology in plants came in 2004 (Rohila et al., 2004,)