In molecular biology, the TATA box (also called the Goldberg-Hogness box) is a DNA sequence (cis-regulatory element) found in the promoter region of genes in archaea and eukaryotes; approximately 24% of human genes contain a TATA box within the core promoter.
Considered to be the core promoter sequence, it is the binding site of either general transcription factors or histones (the binding of a transcription factor blocks the binding of a histone and vice versa) and is involved in the process of transcription by RNA polymerase.
The TATA box was first identified in 1978 by American biochemist David Hogness and his lab.
The TATA box has the core DNA sequence 5'-TATAAA-3' or a variant, which is usually followed by three or more adenine bases. It is usually located 25-35 base pairs upstream of the transcription start site. The sequence is believed to have remained consistent throughout much of the evolutionary process, possibly originating in an ancient eukaryotic organism.
During the process of transcription, the TATA binding protein (TBP) normally binds to the TATA-box sequence, which unwinds the DNA and bends it through 80°. The AT-rich sequence of the TATA-box facilitates easy unwinding, due to weaker base-pairing interactions between A and T bases, as compared to between G and C. The TBP is an unusual protein in that it binds to the minor groove and binds with a β sheet.
The TATA box is usually found at the binding site of RNA polymerase II. TFIID, a transcription factor, binds to the TATA box, followed by TFIIA binding to the upstream part of the TFIID protein. TFIIB then binds to the downstream part of TFIID. RNA polymerase can then recognize this multi-protein complex and bind to it, along with various other transcription factors such as TFIIF, TFIIE and TFIIH. Transcription is then initiated, and the polymerase moves along the DNA strand, leaving TFIID and TFIIA bound to the TATA box. These can then facilitate the binding of additional RNA polymerase II molecules.