A supertaster is a person who experiences the sense of taste with far greater intensity than average, with some studies shown an increased sensitivity to bitter tastes. It may be a cause of selective eating, but selective eaters are not necessarily supertasters, and vice versa.
The term originates with experimental psychologist Linda Bartoshuk who has spent much of her career studying genetic variation in taste perception. In the early 1990s, Bartoshuk and her colleagues noticed some individuals tested in the laboratory seemed to have an elevated taste response and took to calling them supertasters. This increased taste response is not the result of response bias or a scaling artifact, but appears to have an anatomical/biological basis.
In 1931, Arthur L. Fox, a DuPont chemist, discovered that some persons found phenylthiocarbamide (PTC) to be bitter while others found it tasteless. At the 1931 meeting of the American Association for the Advancement of Science, Fox collaborated with Albert F. Blakeslee, a geneticist, to have attendees taste PTC: 65% found it bitter, 28% found it tasteless, and 6% described other taste qualities. Subsequent work revealed that the ability to taste PTC was genetic.
In the 1960s, Roland Fischer was the first to link the ability to taste PTC, and the related compound propylthiouracil (PROP), to food preference and body type. Today, PROP has replaced PTC in taste research because of a faint sulfurous odor and safety concerns with PTC. As described above, Bartoshuk and colleagues discovered that the taster group could be further divided into medium tasters and supertasters. Most estimates suggest 25% of the population are nontasters, 50% are medium tasters, and 25% are supertasters.
The cause of this heightened response is unknown, although it is thought to be related to the presence of the TAS2R38 gene, the ability to taste PROP and PTC, and, at least in part, due to an increased number of fungiform papillae. Any evolutionary advantage to supertasting is unclear. In some environments, heightened taste response, particularly to bitterness, would represent an important advantage in avoiding potentially toxic plant alkaloids. In other environments, increased response to bitterness may have limited the range of palatable foods.