*** Welcome to piglix ***

Supersymmetric


In particle physics, supersymmetry (SUSY) is a proposed type of spacetime symmetry that relates two basic classes of elementary particles: bosons, which have an integer-valued spin, and fermions, which have a half-integer spin. Each particle from one group is associated with a particle from the other, known as its superpartner, the spin of which differs by a half-integer. In a theory with perfectly "unbroken" supersymmetry, each pair of superpartners would share the same mass and internal quantum numbers besides spin. For example, there would be a "selectron" (superpartner electron), a bosonic version of the electron with the same mass as the electron, that would be easy to find in a laboratory. Thus, since no superpartners have been observed, if supersymmetry exists it must be a spontaneously broken symmetry so that superpartners may differ in mass. Spontaneously-broken supersymmetry could solve many mysterious problems in particle physics including the hierarchy problem. The simplest realization of spontaneously-broken supersymmetry, the so-called Minimal Supersymmetric Standard Model, is one of the best studied candidates for physics beyond the Standard Model.

There is only indirect evidence and motivation for the existence of supersymmetry. Direct confirmation would entail production of superpartners in collider experiments, such as the Large Hadron Collider (LHC). The first run of the LHC found no evidence for supersymmetry (all results were consistent with the Standard Model), and thus set limits on superpartner masses in supersymmetric theories. While some remain enthusiastic about supersymmetry, this first run at the LHC led some physicists to explore other ideas. One of the former enthusiastic supporters of supersymmetry theory in the 1980s Mikhail Shifman in his article (dated October 2012) pledged the theoretical community to search for the new ideas and acknowledge the reality, the failure of supersymmetry theory in order to help the new generation of theoreticians (to avoid the useless work and becoming a lost generation). The LHC resumed its search for supersymmetry and other new physics in its second run.


...
Wikipedia

...