*** Welcome to piglix ***

Supersonic flight


Supersonic travel is a rate of travel of an object that exceeds the speed of sound (Mach 1). For objects traveling in dry air of a temperature of 20 °C (68 °F) at sea level, this speed is approximately 343 m/s, 1,125 ft/s, 768 mph, 667 knots, or 1,235 km/h. Speeds greater than five times the speed of sound (Mach 5) are often referred to as hypersonic. Flights during which only some parts of the air surrounding an object, such as the ends of rotor blades, reach supersonic speeds are called transonic. This occurs typically somewhere between Mach 0.8 and Mach 1.23.

Sounds are traveling vibrations in the form of pressure waves in an elastic medium. In gases, sound travels longitudinally at different speeds, mostly depending on the molecular mass and temperature of the gas, and pressure has little effect. Since air temperature and composition varies significantly with altitude, Mach numbers for aircraft may change despite a constant travel speed. In water at room temperature supersonic speed can be considered as any speed greater than 1,440 m/s (4,724 ft/s). In solids, sound waves can be polarized longitudinally or transversely and have even higher velocities.

Supersonic fracture is crack motion faster than the speed of sound in a brittle material.

At the beginning of the 20th century, the term "supersonic" was used as an adjective to describe sound whose frequency is above the range of normal human hearing. The modern term for this meaning is "ultrasonic".

The tip of a bullwhip is thought to be the first man-made object to break the sound barrier, resulting in the telltale "crack" (actually a small sonic boom). The wave motion traveling through the bullwhip is what makes it capable of achieving supersonic speeds.


...
Wikipedia

...