*** Welcome to piglix ***

Subsurface scattering


Subsurface scattering (or SSS), also known as subsurface light transport (SSLT), is a mechanism of light transport in which light penetrates the surface of a translucent object, is scattered by interacting with the material, and exits the surface at a different point. The light will generally penetrate the surface and be reflected a number of times at irregular angles inside the material, before passing back out of the material at an angle other than the angle it would have if it had been reflected directly off the surface. Subsurface scattering is important in 3D computer graphics, being necessary for the realistic rendering of materials such as marble, skin, leaves, wax and milk.

Most materials used in real-time computer graphics today only account for the interaction of light at the surface of an object. In reality, many materials are slightly translucent: light enters the surface; is absorbed, scattered and re-emitted – potentially at a different point. Skin is a good case in point; only about 6% of reflectance is direct, 94% is from subsurface scattering. An inherent property of semitransparent materials is absorption. The further through the material light travels, the greater the proportion absorbed. To simulate this effect, a measure of the distance the light has traveled through the material must be obtained.

One method of estimating this distance is to use depth maps, in a manner similar to shadow mapping. The scene is rendered from the light's point of view into a depth map, so that the distance to the nearest surface is stored. The depth map is then projected onto it using standard projective texture mapping and the scene re-rendered. In this pass, when shading a given point, the distance from the light at the point the ray entered the surface can be obtained by a simple texture lookup. By subtracting this value from the point the ray exited the object we can gather an estimate of the distance the light has traveled through the object.


...
Wikipedia

...