*** Welcome to piglix ***

Steel plate shear wall


A steel plate shear wall (SPSW) consists of steel infill plates bounded by boundary elements.

They constitute an SPSW. Its behavior is analogous to a vertical plate girder cantilevered from its base. Similar to plate girders, the SPW system optimizes component performance by taking advantage of the post-buckling behavior of the steel infill panels. An SPW frame can be idealized as a vertical cantilever plate girder, in which the steel plates act as the web, the columns act as the flanges and the cross beams represent the transverse stiffeners. The theory that governs plate design should not be used in the design of SPW structures since the relatively high bending strength and stiffness of the beams and columns have a significant effect on the post-buckling behavior.

Capacity design of structures is: to control failure in a building by pre-selecting localized ductile fuses (or weak links) to act as the primary location for energy dissipation when a building is subjected to extreme loading. The structure is designed such that all inelastic action (or damage) occurs at these critical locations (the fuses), which are designed to behave in a ductile and stable manner. Conversely, all other structural elements are protected against failure or collapse by limiting the load transfer to these elements to the yield capacity of the fuses. In SPSWs, the infill plates are meant to serve as the fuse elements. When damaged during an extreme loading event, they can be replaced at a reasonable cost and restore the full integrity of the building. In general, SPWs are categorized based on their performance, selection of structural and load-bearing systems, and the presence of perforations or stiffeners (Table 1).

A significant amount of valuable research has been performed on the static and dynamic behavior of SPSWs. Much research has been conducted to not only help determine the behavior, response and performance of SPWs under cyclic and dynamic loading, but also as a means to help advance analysis and design methodologies for the engineering community.

The pioneering work of Kulak and co-investigators at the University of Alberta in Canada led to a simplified method for analyzing a thin unstiffened SPSW – the strip model. This model is incorporated in Chapter 20 of the most recent Canadian Steel Design Standard (CAN/CSA S16-01) and the National Earthquake Hazard Reduction Program (NEHRP) provisions in the US.


...
Wikipedia

...