*** Welcome to piglix ***

Stable stem


In the mathematical field of algebraic topology, the homotopy groups of spheres describe how spheres of various dimensions can wrap around each other. They are examples of topological invariants, which reflect, in algebraic terms, the structure of spheres viewed as topological spaces, forgetting about their precise geometry. Unlike homology groups, which are also topological invariants, the homotopy groups are surprisingly complex and difficult to compute.

The n-dimensional unit sphere — called the n-sphere for brevity, and denoted as Sn — generalizes the familiar circle (S1) and the ordinary sphere (S2). The n-sphere may be defined geometrically as the set of points in a Euclidean space of dimension n + 1 located at a unit distance from the origin. The i-th homotopy group πi(Sn) summarizes the different ways in which the i-dimensional sphere Si can be mapped continuously into the n-dimensional sphere Sn. This summary does not distinguish between two mappings if one can be continuously deformed to the other; thus, only equivalence classes of mappings are summarized. An "addition" operation defined on these equivalence classes makes the set of equivalence classes into an abelian group.

The problem of determining πi(Sn) falls into three regimes, depending on whether i is less than, equal to, or greater than n.

The question of computing the homotopy group πn+k(Sn) for positive k turned out to be a central question in algebraic topology that has contributed to development of many of its fundamental techniques and has served as a stimulating focus of research. One of the main discoveries is that the homotopy groups πn+k(Sn) are independent of n for n ≥ k + 2. These are called the stable homotopy groups of spheres and have been computed for values of k up to 64. The stable homotopy groups form the coefficient ring of an extraordinary cohomology theory, called stable cohomotopy theory. The unstable homotopy groups (for n < k + 2) are more erratic; nevertheless, they have been tabulated for k < 20. Most modern computations use spectral sequences, a technique first applied to homotopy groups of spheres by Jean-Pierre Serre. Several important patterns have been established, yet much remains unknown and unexplained.


...
Wikipedia

...