*** Welcome to piglix ***

Stable distribution

Stable
Probability density function
Symmetric stable distributions
Symmetric α-stable distributions with unit scale factor
Skewed centered stable distributions
Skewed centered stable distributions with unit scale factor
Cumulative distribution function
CDF's for symmetric α-stable distributions
CDFs for symmetric α-stable distributions
CDF's for skewed centered Lévy distributions
CDFs for skewed centered stable distributions
Parameters

α ∈ (0, 2] — stability parameter
β ∈ [−1, 1] — skewness parameter (note that skewness is undefined)
c ∈ (0, ∞) — scale parameter

μ ∈ (−∞, ∞) — location parameter
Support xR, or x ∈ [μ, +∞) if α < 1 and β = 1, or x ∈ (-∞, μ] if α < 1 and β = −1
PDF not analytically expressible, except for some parameter values
CDF not analytically expressible, except for certain parameter values
Mean μ when α > 1, otherwise undefined
Median μ when β = 0, otherwise not analytically expressible
Mode μ when β = 0, otherwise not analytically expressible
Variance 2c2 when α = 2, otherwise infinite
Skewness 0 when α = 2, otherwise undefined
Ex. kurtosis 0 when α = 2, otherwise undefined
Entropy not analytically expressible, except for certain parameter values
MGF undefined
CF


where

α ∈ (0, 2] — stability parameter
β ∈ [−1, 1] — skewness parameter (note that skewness is undefined)
c ∈ (0, ∞) — scale parameter


In probability theory, a distribution or a random variable is said to be stable if a linear combination of two independent copies of a random sample has the same distribution, up to location and scale parameters. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it.


...
Wikipedia

...