*** Welcome to piglix ***

Stabilizer for polymers


Stabilizers for polymers are used directly or by combinations to prevent the various effects such as oxidation, chain scission and uncontrolled recombinations and cross-linking reactions that are caused by photo-oxidation of polymers. Polymers are considered to get weathered due to the direct or indirect impact of heat and ultraviolet light. The effectiveness of the stabilizers against weathering depends on solubility, ability to stabilize in different polymer matrix, the distribution in matrix, evaporation loss during processing and use. The effect on the viscosity is also an important concern for processing.

Heat stabilizers are mainly used for construction products made of polyvinyl chloride, for instance window profiles, pipes and cable ducts. Light stabilizers, for instance HALS, are especially needed for polypropylene and polyethylene. The environmental impact of stabilizers for polymers can be problematic because of heavy metal content. In Europe lead stabilizers are increasingly replaced by other types, for example calcium-zinc stabilizers.

Antioxidants are used to terminate the oxidation reactions taking place due to different weathering conditions and reduce the degradation of organic materials. For example, synthetic polymers react with atmospheric oxygen. Organic materials undergo auto-oxidizations due to free radical chain reaction. Oxidatively sensitive substrates will react with atmospheric oxygen directly and produce free radicals. Free radicals are of different forms, consider organic material RH. This material reacts with oxygen to give free radicals such as R•, RO•, ROO•, HO•[1]. These free radicals further react with atmospheric oxygen to produce more and more free radicals. For example, R• + O2 → ROO• ROO• + RH → ROOH + R• [1] This can be terminated by using antioxidants. Then this reaction comes to, 2R• → R—R ROO• + R• → ROOR 2ROO• → Non-radical products[1] Weathering of polymers is caused by absorption of UV lights, which results in, radical initiated auto-oxidation. This produces cleavage of hydro peroxides and carbonyl compounds. This is because of the weak bond in hydro peroxides which is the main source for the free radicals to initiate from. Homolytic decomposition of hydro peroxide increases the rate of free radicals production[1]. Therefore, it is important factor in determining oxidative stability. The conversion of peroxy and alkyl radicals to non-radical species terminates the chain reaction, thereby decreasing the kinetic chain length.


...
Wikipedia

...