A square wave is a non-sinusoidal periodic waveform (which can be represented as an infinite summation of sinusoidal waves), in which the amplitude alternates at a steady frequency between fixed minimum and maximum values, with the same duration at minimum and maximum. The transition between minimum to maximum is instantaneous for an ideal square wave; this is not realizable in physical systems. Square waves are often encountered in electronics and signal processing. Its stochastic counterpart is a two-state trajectory. A similar but not necessarily symmetric wave, with arbitrary durations at minimum and maximum, is called a pulse wave (of which the square wave is a special case).
The ratio of the high period to the total period of any rectangular wave is called the duty cycle. A true square wave has a 50% duty cycle (equal high and low periods). The average level of a rectangular wave is also given by the duty cycle, therefore by varying the on and off periods and then averaging these said periods, it is possible to represent any value between the two limiting levels. This is the basis of pulse width modulation.
Square waves are universally encountered in digital switching circuits and are naturally generated by binary (two-level) logic devices. They are used as timing references or "clock signals", because their fast transitions are suitable for triggering synchronous logic circuits at precisely determined intervals. However, as the frequency-domain graph shows, square waves contain a wide range of harmonics; these can generate electromagnetic radiation or pulses of current that interfere with other nearby circuits, causing noise or errors. To avoid this problem in very sensitive circuits such as precision analog-to-digital converters, sine waves are used instead of square waves as timing references.