The square of opposition is a diagram representing the relations between four categorical propositions. The origin of the square can be traced back to Aristotle making the distinction between two oppositions: contradiction and contrariety. But Aristotle did not draw any diagram. This was done several centuries laters by Apuleius and Boethius.
In traditional logic, a proposition (Latin: propositio) is a spoken assertion (oratio enunciativa), not the meaning of an assertion, as in modern philosophy of language and logic. A categorical proposition is a simple proposition containing two terms, subject and predicate, in which the predicate is either asserted or denied of the subject.
Every categorical proposition can be reduced to one of four logical forms. These are:
In tabular form:
Aristotle states (in chapters six and seven of the Peri hermaneias (Περὶ Ἑρμηνείας, Latin De Interpretatione, English 'On Interpretation')), that there are certain logical relationships between these four kinds of proposition. He says that to every affirmation there corresponds exactly one negation, and that every affirmation and its negation are 'opposed' such that always one of them must be true, and the other false. A pair of affirmative and negative statements he calls a 'contradiction' (in medieval Latin, contradictio). Examples of contradictories are 'every man is white' and 'not every man is white' (also read as 'some men are not white'), 'no man is white' and 'some man is white'.
'Contrary' (medieval: contrariae) statements, are such that both cannot at the same time be true. Examples of these are the universal affirmative 'every man is white', and the universal negative 'no man is white'. These cannot be true at the same time. However, these are not contradictories because both of them may be false. For example, it is false that every man is white, since some men are not white. Yet it is also false that no man is white, since there are some white men.
Since every statement has a contradictory opposite, and since a contradictory is true when its opposite is false, it follows that the opposites of contraries (which the medievals called subcontraries, subcontrariae) can both be true, but they cannot both be false. Since subcontraries are negations of universal statements, they were called 'particular' statements by the medieval logicians.
Another logical opposition implied by this, though not mentioned explicitly by Aristotle, is 'alternation' (alternatio), consisting of 'subalternation' and 'superalternation'. Alternation is a relation between a particular statement and a universal statement of the same quality such that the particular is implied by the other. The particular is the subaltern of the universal, which is the particular's superaltern. For example, if 'every man is white' is true, its contrary 'no man is white' is false. Therefore the contradictory 'some man is white' is true. Similarly the universal 'no man is white' implies the particular 'not every man is white'.