*** Welcome to piglix ***

Spin multiplicity


In quantum mechanics and particle physics, spin is an intrinsic form of angular momentum carried by elementary particles, composite particles (hadrons), and atomic nuclei.

Spin is one of two types of angular momentum in quantum mechanics, the other being orbital angular momentum. The orbital angular momentum operator is the quantum-mechanical counterpart to the classical angular momentum of orbital revolution: it arises when a particle executes a rotating or twisting trajectory (such as when an electron orbits a nucleus). The existence of spin angular momentum is inferred from experiments, such as the Stern–Gerlach experiment, in which particles are observed to possess angular momentum that cannot be accounted for by orbital angular momentum alone.

In some ways, spin is like a vector quantity; it has a definite magnitude, and it has a "direction" (but quantization makes this "direction" different from the direction of an ordinary vector). All elementary particles of a given kind have the same magnitude of spin angular momentum, which is indicated by assigning the particle a spin quantum number.

The SI unit of spin is the (N·m·s) or (kg·m2·s−1), just as with classical angular momentum. In practice, spin is given as a dimensionless spin quantum number by dividing the spin angular momentum by the reduced Planck constant ħ, which has the same units of angular momentum, although it should be noted that this is not the full computation of this value. Very often, the "spin quantum number" is simply called "spin" leaving its meaning as the unitless "spin quantum number" to be inferred from context.


...
Wikipedia

...