In quantum mechanics, the spin–statistics theorem relates the intrinsic spin of a particle (angular momentum not due to the orbital motion) to the particle statistics it obeys. In units of the reduced Planck constant ħ, all particles have either integer spin or half-integer spin.
In a quantum system, a physical state is described by a state vector. A pair of distinct (occupying separate points) state vectors are physically equivalent if their absolute value is equal, ignoring other interactions. A pair of indistinguishable particles such as this have only one state. This means that if the positions of the particles are exchanged, this does not identify a new physical state, but rather one matching the original physical state. In fact, one cannot tell which particle is in which position.
While the physical state does not change under the exchange of the particles' positions, it is possible for the state vector to be negated as a result of an exchange. Since this does not change the absolute value of the state vector, this negation does not affect the physical state.
The essential ingredient in proving the spin/statistics relation is relativity, that the physical laws do not change under Lorentz transformations. The field operators transform under Lorentz transformations according to the spin of the particle that they create, by definition.
Additionally, the assumption (known as microcausality) that spacelike separated fields either commute or anticommute can be made only for relativistic theories with a time direction. Otherwise, the notion of being spacelike is meaningless. However, the proof involves looking at a Euclidean version of spacetime, in which the time direction is treated as a spatial one, as will be now explained.
Lorentz transformations include 3-dimensional rotations as well as boosts. A boost transfers to a frame of reference with a different velocity, and is mathematically like a rotation into time. By analytic continuation of the correlation functions of a quantum field theory, the time coordinate may become imaginary, and then boosts become rotations. The new "spacetime" has only spatial directions and is termed Euclidean.