*** Welcome to piglix ***

Spaghettification


In astrophysics, spaghettification (sometimes referred to as the noodle effect) is the vertical stretching and horizontal compression of objects into long thin shapes (rather like spaghetti) in a very strong non-homogeneous gravitational field; it is caused by extreme tidal forces. In the most extreme cases, near black holes, the stretching is so powerful that no object can withstand it, no matter how strong its components. Within a small region the horizontal compression balances the vertical stretching so that small objects being spaghettified experience no net change in volume.

Stephen Hawking describes the flight of a fictional astronaut who, passing within a black hole's event horizon, is "stretched like spaghetti" by the gravitational gradient (difference in strength) from head to toe. The reason this happens would be because the gravity exerted from the singularity would be much stronger at one end of your body from the other. If one were to fall into a black hole feet first, the gravity at his/her feet would be much stronger than at their head, causing the person to be vertically stretched. Along with that, the right side of the body will be pulled to the left, and the left side of the body will be pulled to the right, horizontally compressing the person. However, the term "spaghettification" was established well before this.

Imagine four separate objects in the space above a planet, positioned in a diamond formation. The four objects follow the lines of the gravitoelectric field, directed towards the celestial body's centre. In accordance with the inverse-square law, the lowest of the four objects experiences the biggest gravitational acceleration, so that the whole formation becomes stretched into a line.

Now imagine these four objects as connected parts of a larger object. A rigid body will resist distortion, and internal elastic forces develop as the body distorts to balance the tidal forces, so attaining mechanical equilibrium. If the tidal forces are too large, the body may yield and flow plastically before the tidal forces can be balanced, or fracture, producing either a filament or a vertical line of broken pieces.


...
Wikipedia

...