*** Welcome to piglix ***

Event horizon


In general relativity, an event horizon is a boundary in spacetime beyond which events cannot affect an outside observer. In layman's terms, it is defined as the shell of "points of no return", i.e., the points at which the gravitational pull becomes so great as to make escape impossible, even for light. An event horizon is most commonly associated with black holes. Light emitted from inside the event horizon can never reach the outside observer. Likewise, any object approaching the horizon from the observer's side appears to slow down and never quite pass through the horizon, with its image becoming more and more redshifted as time elapses. This means that the wavelength is getting longer as the object moves away from the observer. The traveling object, however, experiences no strange effects and does, in fact, pass through the horizon in a finite amount of proper time.

More specific types of horizon include the related but distinct absolute and apparent horizons found around a black hole. Still other distinct notions include the Cauchy and Killing horizon; the photon spheres and ergospheres of the Kerr solution; particle and cosmological horizons relevant to cosmology; and isolated and dynamical horizons important in current black hole research.

One of the best-known examples of an event horizon derives from general relativity's description of a black hole, a celestial object so massive that no nearby matter or radiation can escape its gravitational field. Often, this is described as the boundary within which the black hole's escape velocity is greater than the speed of light. However, a more accurate description is that within this horizon, all lightlike paths (paths that light could take) and hence all paths in the forward light cones of particles within the horizon, are warped so as to fall farther into the hole. Once a particle is inside the horizon, moving into the hole is as inevitable as moving forward in time, and can actually be thought of as equivalent to doing so, depending on the spacetime coordinate system used.


...
Wikipedia

...