In geometry, space partitioning is the process of dividing a space (usually a Euclidean space) into two or more disjoint subsets (see also partition of a set). In other words, space partitioning divides a space into non-overlapping regions. Any point in the space can then be identified to lie in exactly one of the regions.
Space-partitioning systems are often hierarchical, meaning that a space (or a region of space) is divided into several regions, and then the same space-partitioning system is recursively applied to each of the regions thus created. The regions can be organized into a tree, called a space-partitioning tree.
Most space-partitioning systems use planes (or, in higher dimensions, hyperplanes) to divide space: points on one side of the plane form one region, and points on the other side form another. Points exactly on the plane are usually arbitrarily assigned to one or the other side. Recursively partitioning space using planes in this way produces a BSP tree, one of the most common forms of space partitioning.
Space partitioning is particularly important in computer graphics, especially heavily used in ray tracing, where it is frequently used to organize the objects in a virtual scene. A typical scene may contain millions of polygons. Performing a ray/polygon intersection test with each would be a very computationally expensive task.
Storing objects in a space-partitioning data structure (k-d tree or BSP tree for example) makes it easy and fast to perform certain kinds of geometry queries—for example in determining whether a ray intersects an object, space partitioning can reduce the number of intersection test to just a few per primary ray, yielding a logarithmic time complexity with respect to the number of polygons.