The South Atlantic Anomaly (SAA) is an area where the Earth's inner Van Allen radiation belt comes closest to the Earth's surface, dipping down to an altitude of 200 kilometres (120 mi). This leads to an increased flux of energetic particles in this region and exposes orbiting satellites to higher-than-usual levels of radiation.
The effect is caused by the non-concentricity of the Earth and its magnetic dipole. The SAA is the near-Earth region where the Earth's magnetic field is weakest relative to an idealized Earth-centered dipole field.
The area of the SAA is confined by the intensity of Earth's magnetic field at less than 32,000 nanotesla at sea level, which corresponds to the dipolar magnetic field at ionospheric altitudes. However, the field itself varies in intensity as a gradient.
The Van Allen radiation belts are symmetrical about the Earth's magnetic axis, which is tilted with respect to the Earth's rotational axis by an angle of approximately 11 degrees. The intersection between the magnetic and rotation axes of the Earth is located not at the Earth's "middle", but some 450 to 500 km (280 to 310 mi) further north. Because of this asymmetry, the inner Van Allen belt is closest to the Earth's surface over the south Atlantic Ocean where it dips down to 200 km (120 mi) in altitude, and farthest from the Earth's surface over the north Pacific Ocean.
If Earth's magnetism is represented by a bar magnet of small size but strong intensity ("magnetic dipole"), the SAA variation can be illustrated by placing the magnet not at the Equator, but some distance away from it, more or less over Singapore. As a result, over northern South America and the south Atlantic, near Singapore's antipodal point, the magnetic field is relatively weak, resulting in a lower repulsion to trapped particles of the radiation belts there, and as a result these particles reach deeper into the upper atmosphere than they otherwise would.