*** Welcome to piglix ***

Soil resilience


Soil resilience refers to the ability of a soil to resist or recover their healthy state in response to destabilising influences. This is a subset of a notion of environmental resilience.

Soil resilience should first be looked at in terms of soil formation and development (pedogenesis), a continuous process taking thousands of years – this puts into context the short time that humans have so extensively utilised, changed and depended directly on soil. Pedogenesis is the result of five factors: the first two are parent material and topography, which are passive and contribute to soil mass and position; the next two are climate and the biosphere, which are active and supply the energy in soil formation. Finally, there is time.

It is the active factors in soil formation that vary so as to constitute an environmental change or shock. Over time, variations have been significant:

If soil were not resilient, then in the face of past influences it would not be in any condition to support the natural and commercial services that we expect of it currently. So what do we expect of soil resilience?

In Australia, the above questions are relevant given the strong dependence on the soil, yet the significant degradation of soils over little more than 200 years due to adoption of European styled agriculture. This is in the context of the real prospect of climate change, cyclical drought and other degrading affects.

It is in the interest of humans to sustain soils as this is the essence of our existence: the maintenance of fertile soil is “one of the most vital ecological services the living world performs”; the “mineral and organic contents of soil must be replenished constantly as plants consume soil elements and pass them up the food chain”.

It is claimed by Watson (1992) that the ecosystems of Australia, which have evolved over millennia, have been decimated over the last 200 years. Our expectation has been one of ongoing environmental and commercial service, yet the practices applied have been unsustainable and have led to such soil related problems as salinity, acidity, nutrient decline, erosion and structure decline.


...
Wikipedia

...