*** Welcome to piglix ***

Sodium cyanide

Sodium cyanide
Sodium cyanide bonding
Identifiers
143-33-9 YesY
3D model (Jmol) Interactive image
ChEMBL ChEMBL1644697 N
ChemSpider 8587 YesY
ECHA InfoCard 100.005.091
EC Number 205-599-4
PubChem 8929
RTECS number VZ7525000
UN number 1689
Properties
NaCN
Molar mass 49.0072 g/mol
Appearance white solid
Odor faint almond-like
Density 1.5955 g/cm3
Melting point 563.7 °C (1,046.7 °F; 836.9 K)
Boiling point 1,496 °C (2,725 °F; 1,769 K)
48.15 g/100 mL (10 °C)
63.7 g/100 mL (25 °C)
Solubility soluble in ammonia, methanol, ethanol
very slightly soluble in dimethylformamide, SO2
insoluble in dimethylsulphoxide
1.452
Thermochemistry
70.4 J/mol K
115.7 J/mol K
-91 kJ/mol
Hazards
Safety data sheet ICSC 1118
Very Toxic T+ Dangerous for the Environment (Nature) N Corrosive C
R-phrases R26/27/28, R32, R50/53
S-phrases (S1/2), S7, S28, S29, S45, S60, S61
NFPA 704
Flammability code 0: Will not burn. E.g., water Health code 4: Very short exposure could cause death or major residual injury. E.g., VX gas Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
Flash point Non-flammable
Lethal dose or concentration (LD, LC):
LD50 (median dose)
6.44 mg/kg (rat, oral)
4 mg/kg (sheep, oral)
15 mg/kg (mammal, oral)
8 mg/kg (rat, oral)
US health exposure limits (NIOSH):
PEL (Permissible)
TWA 5 mg/m3
REL (Recommended)
C 5 mg/m3 (4.7 ppm) [10-minute]
IDLH (Immediate danger)
25 mg/m3 (as CN)
Related compounds
Other cations
Potassium cyanide
Related compounds
Hydrogen cyanide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N  (what is YesYN ?)
Infobox references

Sodium cyanide is an inorganic compound with the formula NaCN. It is a white, water-soluble solid. Cyanide has a high affinity for metals, which leads to the high toxicity of this salt. Its main application, in gold mining, also exploits its high reactivity toward metals. When it is treated with acid, it forms the toxic gas hydrogen cyanide:

Sodium cyanide is produced by treating hydrogen cyanide with sodium hydroxide:

Worldwide production was estimated at 500,000 tons in the year 2006. Formerly it was prepared by the Castner-Kellner process involving the reaction of sodium amide with carbon at elevated temperatures.

The structure of solid NaCN is related to that of sodium chloride. The anions and cations are each six-coordinate. Potassium cyanide (KCN) adopts a similar structure. Each Na+ forms pi-bonds to two CN groups as well as two "bent" Na---CN and two "bent" Na---NC links.

Because the salt is derived from a weak acid, sodium cyanide readily reverts to HCN by hydrolysis: the moist solid emits small amounts of hydrogen cyanide, which smells like bitter almonds (not everyone can smell it—the ability thereof is due to a genetic trait). Sodium cyanide reacts rapidly with strong acids to release hydrogen cyanide. This dangerous process represents a significant risk associated with cyanide salts. It is detoxified most efficiently with hydrogen peroxide (H2O2) to produce sodium cyanate (NaOCN) and water:

Sodium cyanide is used mainly to extract gold and other precious metals in mining industry. This application exploits the high affinity of gold(I) for cyanide, which induces gold metal to oxidize and dissolve in the presence of air (oxygen) and water, producing the salt sodium gold cyanide (or gold sodium cyanide) and sodium hydroxide:


...
Wikipedia

...