In logic, a slingshot argument is one of a group of arguments claiming to show that all true sentences stand for the same thing.
This type of argument was dubbed the "slingshot" by philosophers Jon Barwise and John Perry (1981) due to its disarming simplicity. It is usually said that versions of the slingshot argument have been given by Gottlob Frege, Alonzo Church, W. V. Quine, and Donald Davidson. However, it has been disputed by Lorenz Krüger (1995) that there is much unity in this tradition. Moreover, Krüger rejects Davidson's claim that the argument can refute the correspondence theory of truth. Stephen Neale (1995) claims, controversially, that the most compelling version was suggested by Kurt Gödel (1944).
These arguments are sometimes modified to support the alternative, and evidently stronger, conclusion that there is only one fact, or one true proposition, state of affairs, truth condition, truthmaker, and so on.
One version of the argument (Perry 1996) proceeds as follows.
Assumptions:
Let S and T be arbitrary true sentences, designating Des(S) and Des(T), respectively. (No assumptions are made about what kinds of things Des(S) and Des(T) are.) It is now shown by a series of designation-preserving transformations that Des(S) = Des(T). Here, "" can be read as "the x such that".