Types of SNPs |
---|
A single-nucleotide polymorphism, often abbreviated to SNP (/ˈsnɪp/; plural /ˈsnɪps/), is a variation in a single nucleotide that occurs at a specific position in the genome, where each variation is present to some appreciable degree within a population (e.g. > 1%).
For example, at a specific base position in the human genome, the base C may appear in most individuals, but in a minority of individuals, the position is occupied by base A. There is a SNP at this specific base position, and the two possible nucleotide variations – C or A – are said to be alleles for this base position.
SNPs underlie differences in our susceptibility to disease; a wide range of human diseases, e.g. sickle-cell anemia, β-thalassemia and cystic fibrosis result from SNPs. The severity of illness and the way our body responds to treatments are also manifestations of genetic variations. For example, a single base mutation in the APOE (apolipoprotein E) gene is associated with a higher risk for Alzheimer's disease.
A single-nucleotide variant (SNV) is a variation in a single nucleotide without any limitations of frequency and may arise in somatic cells. A somatic single nucleotide variation (e.g., caused by cancer) may also be called a single-nucleotide alteration.
Single-nucleotide polymorphisms may fall within coding sequences of genes, non-coding regions of genes, or in the intergenic regions (regions between genes). SNPs within a coding sequence do not necessarily change the amino acid sequence of the protein that is produced, due to degeneracy of the genetic code.