In astrophysics, silicon burning is a very brief sequence of nuclear fusion reactions that occur in massive stars with a minimum of about 8-11 solar masses. Silicon burning is the final stage of fusion for massive stars that have run out of the fuels that power them for their long lives in the main sequence on the Hertzsprung-Russell diagram. It follows the previous stages of hydrogen, helium, carbon, neon and oxygen burning processes.
Silicon burning begins when gravitational contraction raises the star’s core temperature to 2.7-3.5 billion Kelvin (GK). The exact temperature depends on mass. When a star has completed the silicon-burning phase, no further fusion is possible. The star catastrophically collapses and may explode in what is known as a Type II supernova.
After a star completes the oxygen burning process, its core is composed primarily of silicon and sulfur. If it has sufficiently high mass, it further contracts until its core reaches temperatures in the range of 2.7–3.5 GK (230–300 keV). At these temperatures, silicon and other elements can photodisintegrate, emitting a proton or an alpha particle. Silicon burning proceeds by photodisintegration rearrangement, which creates new elements by adding one of these freed alpha particles (the equivalent of a helium nucleus) per capture step in the following sequence (photoejection of alphas not shown):
The silicon-burning sequence lasts about one day before being struck by the shock wave that was launched by the core collapse. Burning then becomes much more rapid at the elevated temperature and stops only when the rearrangement chain has been converted to nickel-56 or is stopped by supernova ejection and cooling. The star can no longer release energy via nuclear fusion because a nucleus with 56 nucleons has the lowest mass per nucleon of all the elements in the alpha process sequence. Only minutes are available for the nickel-56 to decay within the core of a massive star, and only seconds if in the ejecta. The star has run out of nuclear fuel and within minutes its core begins to contract.