*** Welcome to piglix ***

Shapiro–Wilk test


The Shapiro–Wilk test is a test of normality in frequentist statistics. It was published in 1965 by Samuel Sanford Shapiro and Martin Wilk.

The Shapiro–Wilk test tests the null hypothesis that a sample x1, ..., xn came from a normally distributed population. The test statistic is

where

The null-hypothesis of this test is that the population is normally distributed. Thus, if the p-value is less than the chosen alpha level, then the null hypothesis is rejected and there is evidence that the data tested are not from a normally distributed population; in other words, the data are not normal. On the contrary, if the p-value is greater than the chosen alpha level, then the null hypothesis that the data came from a normally distributed population cannot be rejected (e.g., for an alpha level of 0.05, a data set with a p-value of 0.02 rejects the null hypothesis that the data are from a normally distributed population). However, since the test is biased by sample size, the test may be statistically significant from a normal distribution in any large samples. Thus a Q–Q plot is required for verification in addition to the test.

Monte Carlo simulation has found that Shapiro–Wilk has the best power for a given significance, followed closely by Anderson–Darling when comparing the Shapiro–Wilk, Kolmogorov–Smirnov, Lilliefors, and Anderson–Darling tests.


...
Wikipedia

...