*** Welcome to piglix ***

Alpha level


In statistical hypothesis testing, a type I error is the incorrect rejection of a true null hypothesis (a "false positive"), while a type II error is incorrectly retaining a false null hypothesis (a "false negative"). More simply stated, a type I error is detecting an effect that is not present, while a type II error is failing to detect an effect that is present.

In statistics, a null hypothesis is a statement that one seeks to nullify with evidence to the contrary. Most commonly it is a statement that the phenomenon being studied produces no effect or makes no difference. An example of a null hypothesis is the statement "This diet has no effect on people's weight." Usually, an experimenter frames a null hypothesis with the intent of rejecting it: that is, intending to run an experiment which produces data that shows that the phenomenon under study does make a difference. In some cases there is a specific alternative hypothesis that is opposed to the null hypothesis, in other cases the alternative hypothesis is not explicitly stated, or is simply "the null hypothesis is false" – in either event, this is a binary judgment, but the interpretation differs and is a matter of significant dispute in statistics.

A type I error (or error of the first kind) is the incorrect rejection of a true null hypothesis. Usually a type I error leads one to conclude that a supposed effect or relationship exists when in fact it doesn't. Examples of type I errors include a test that shows a patient to have a disease when in fact the patient does not have the disease, a fire alarm going on indicating a fire when in fact there is no fire, or an experiment indicating that a medical treatment should cure a disease when in fact it does not.

A type II error (or error of the second kind) is the failure to reject a false null hypothesis. Examples of type II errors would be a blood test failing to detect the disease it was designed to detect, in a patient who really has the disease; a fire breaking out and the fire alarm does not ring; or a clinical trial of a medical treatment failing to show that the treatment works when really it does.

In terms of false positives and false negatives, a positive result corresponds to rejecting the null hypothesis, while a negative result corresponds to failing to reject the null hypothesis.

When comparing two means, concluding the means were different when in reality they were not different would be a Type I error; concluding the means were not different when in reality they were different would be a Type II error. Various extensions have been suggested as "Type III errors", though none have wide use.


...
Wikipedia

...