Serine dehydratase | |
---|---|
Identifiers | |
Symbol | SDS |
Entrez | 10993 |
HUGO | 10691 |
OMIM | 182128 |
RefSeq | NM_006843 |
UniProt | P20132 |
Other data | |
EC number | 4.3.1.17 |
Locus | Chr. 12 q24.21 |
Serine dehydratase or L-serine ammonia lyase (SDH) is in the β-family of pyridoxal phosphate-dependent (PLP) enzymes. SDH is found widely in nature, but its structural and chemical properties vary greatly among species. SDH is found in yeast, bacteria, and the cytoplasm of mammalian . The reaction it catalyzes is the deamination of L-serine to yield pyruvate, with the release of ammonia.
This enzyme has 1 substrate, L-serine, and two products, pyruvate and NH3, and uses 1 cofactor, pyridoxal phosphate (PLP). The enzyme's main role is in gluconeogenesis in the liver's cytoplasm. By orienting the substrates and utilizing the PLP coenzyme, SDH lowers the activation energy to convert L-Serine into pyruvate, which can then be converted into glucose.
Serine Dehydratase is also known as:
HoloEnzyme: The holoenzyme SDH contains 319 residues, 1 PLP cofactor molecule, and 131 water molecules. The overall fold of the monomer is very similar to that of other PLP-dependent enzymes of the Beta-family. The enzyme contains a large domain (catalytic domain or PLP- binding domain) and a small domain. The domains are joined by two peptide linkers (residues 32-35 and 138-146), with the internal gap created being the space for the active site (Figure 1).