*** Welcome to piglix ***

Serine

Serine
Skeletal formula
Serine at physiological pH
Names
IUPAC name
Serine
Other names
2-Amino-3-hydroxypropanoic acid
Identifiers
56-45-1 (L-) YesY
302-84-1 (DL-) YesY
312-84-5 (D-) YesY
3D model (Jmol) Interactive image
ChEBI CHEBI:17115 YesY
ChEMBL ChEMBL11298 YesY
ChemSpider 5736 (L-form) YesY
597 YesY
DrugBank DB00133 YesY
ECHA InfoCard 100.000.250
EC Number 206-130-6
726
PubChem 617
UNII 452VLY9402 (L-) YesY
00PAR1C66F (DL-) YesY
1K77H2Z9B1 (D-) YesY
Properties
C3H7NO3
Molar mass 105.09 g·mol−1
Appearance white crystals or powder
Density 1.603 g/cm3 (22 °C)
Melting point 246 °C (475 °F; 519 K) decomposes
soluble
Acidity (pKa) 2.21 (carboxyl), 9.15 (amino)
Supplementary data page
Refractive index (n),
Dielectric constantr), etc.
Thermodynamic
data
Phase behaviour
solid–liquid–gas
UV, IR, NMR, MS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY  (what is YesYN ?)
Infobox references

Serine (abbreviated as Ser or S) encoded by the codons UCU, UCC, UCA, UCG, AGU and AGC is an ɑ-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonatedNH+
3
form under biological conditions), a carboxyl group (which is in the deprotonatedCOO
form in physiological conditions), and a side chain consisting of a hydroxymethyl group (see hydroxyl), classifying it as a polar amino acid. It can be synthesized in the human body under normal physiological circumstances, making it a nonessential amino acid.

This compound is one of the naturally occurring proteinogenic amino acids. Only the L-stereoisomer appears naturally in proteins. It is not essential to the human diet, since it is synthesized in the body from other metabolites, including glycine. Serine was first obtained from silk protein, a particularly rich source, in 1865. Its name is derived from the Latin for silk, sericum. Serine's structure was established in 1902.

The biosynthesis of serine starts with the oxidation of 3-phosphoglycerate (an intermediate from glycolysis) to 3-phosphohydroxypyruvate and NADH by phosphoglycerate dehydrogenase (EC 1.1.1.95). Reductive amination (transamination) of this ketone by phosphoserine transaminase (EC 2.6.1.52) yields 3-phosphoserine (O-phosphoserine) which is hydrolyzed to serine by phosphoserine phosphatase (EC 3.1.3.3).


...
Wikipedia

...