Stimulus modality, also called sensory modality, is one aspect of a stimulus or what we perceive after a stimulus. For example, the temperature modality is registered after heat or cold stimulate a receptor. Some sensory modalities include: light, sound, temperature, taste, pressure, and smell. The type and location of the sensory receptor activated by the stimulus plays the primary role in coding the sensation. All sensory modalities work together to heighten stimuli sensation when necessary.
Multimodal perception is the ability of the mammalian nervous system to combine all of the different inputs of the sensory system to result in an enhanced detection or identification of a particular stimulus. Combinations of all sensory modalities are done in cases where a single sensory modality results in ambiguous and incomplete result.
Integration of all sensory modalities occurs when multimodal neurons receive sensory information which overlaps with different modalities. Multimodal neurons are found in the superior colliculus; they respond to the versatility of various sensory inputs. The multimodal neurons lead to change of behavior and assist in analyzing behavior responses to certain stimulus. Information from two or more senses is encountered. Multimodal perception is not limited to one area of the brain: many brain regions are activated when sensory information is perceived from the environment. In fact, the hypothesis of having a centralized multisensory region is receiving continually more speculation, as several regions previously uninvestigated are now considered multimodal. The reasons behind this are currently being investigated by several research groups, but it is now understood to approach these issues from a decentralized theoretical perspective. Moreover, several labs using invertebrate model organisms will provide invaluable information to the community as these are more easily studied and are considered to have decentralized nervous systems.
Lip reading is a multimodal process for humans. By watching movements of lips and face, humans get conditioned and practice lip reading. Silent lip reading activates the auditory cortex. When sounds are matched or mismatched with the movements of the lips, temporal sulcus of the left hemisphere becomes more active.