*** Welcome to piglix ***

Semiconductor package


A semiconductor package is a metal, plastic, glass or ceramic casing containing one or more semiconductor electronic components. Individual discrete components are typically etched in silicon wafer before being cut and assembled in a package. The package provides protection against impact and corrosion, holds the contact pins or leads which are used to connect from external circuits to the device, and dissipates heat produced in the device.

Thousands of standard package types are made, with some made to industry-wide standards and some particular to an individual manufacturer.

A semiconductor package may have as few as two leads or contacts for devices such as diodes, or in the case of advanced microprocessors, a package may have hundreds of connections. Very small packages may be supported only by their wire leads. Larger devices, intended for high-power applications, are installed in carefully designed heat sinks so that they can dissipate hundred or thousands of watts of waste heat.

In addition to providing connections to the semiconductor and handling waste heat, the semiconductor package must protect the "chip" from the environment, particularly the ingress of moisture. Stray particles or corrosion products inside the package may degrade performance of the device or cause failure. A hermetic package allows essentially no gas exchange with the surroundings; such construction requires glass, ceramic or metal enclosures.

Manufacturers usually print -- using ink or laser marking -- the manufacturer's logo and the manufacturer's part number on the package, to make it easier to distinguish the many different and incompatible devices packaged in relatively few kinds of packages. The markings often include a 4 digit date code, often represented as YYWW where YY is replaced by the last 2 digits of the calendar year and WW is replaced by the two-digit week number.

To make connections between an integrated circuit and the leads of the package, wire bonds are used, with fine wires connected from the package leads and bonded to conductive pads on the semiconductor die. At the outside of the package, wire leads may be soldered to a printed circuit board or used to secure the device to a tag strip. Modern surface mount devices eliminate most of the drilled holes through circuit boards, and have short metal leads or pads on the package that can be secured by oven-reflow soldering. Aerospace devices in flat packs may use flat metal leads secured to a circuit board by spot welding, though this type of construction is now uncommon.


...
Wikipedia

...