*** Welcome to piglix ***

Laser marking


Laser engraving, which is a subset of laser marking, is the practice of using lasers to engrave an object. Laser marking, on the other hand, is a broader category of methods to leave marks on an object, which also includes color change due to chemical/molecular alteration, charring, foaming, melting, ablation, and more. The technique does not involve the use of inks, nor does it involve tool bits which contact the engraving surface and wear out, giving it an advantage over alternative engraving or marking technologies where inks or bit heads have to be replaced regularly.

The impact of laser marking has been more pronounced for specially designed "laserable" materials and also for some paints. These include laser-sensitive polymers and novel metal alloys.

The term laser marking is also used as a generic term covering a broad spectrum of surfacing techniques including printing, hot-branding and laser bonding. The machines for laser engraving and laser marking are the same, so that the two terms are sometimes confused by those without knowledge or experience in the practice.

A laser engraving machine can be thought of as three main parts: a laser, a controller, and a surface. The laser is like a pencil - the beam emitted from it allows the controller to trace patterns onto the surface. The controller (usually a computer) controls the direction, intensity, speed of movement, and spread of the laser beam aimed at the surface. The surface is picked to match what the laser can act on.

There are three main genres of engraving machines: The most common is the X-Y table where, usually, the workpiece (surface) is stationary and the laser optics move around in X and Y directions, directing the laser beam to draw vectors. Sometimes the laser is stationary and the workpiece moves. Sometimes the workpiece moves in the Y axis and the laser in the X axis. A second genre is for cylindrical workpieces (or flat workpieces mounted around a cylinder) where the laser effectively traverses a fine helix and on/off laser pulsing produces the desired image on a raster basis. In the third method, both the laser and workpiece are stationary and galvo mirrors move the laser beam over the workpiece surface. Laser engravers using this technology can work in either raster or vector mode.


...
Wikipedia

...