In the theory of grand unification of particle physics, and, in particular, in theories of neutrino masses and neutrino oscillation, the seesaw mechanism is a generic model used to understand the relative sizes of observed neutrino masses, of the order of eV, compared to those of quarks and charged leptons, which are millions of times heavier.
There are several types of models, each extending the Standard Model. The simplest version, type 1, extends the Standard Model by assuming two or more additional right-handed neutrino fields inert under the electroweak interactions, and the existence of a very large mass scale. This allows the mass scale to be identifiable with the postulated scale of grand unification.
This model produces a light neutrino, for each of the three known neutrino flavors, and a corresponding very heavy neutrino for each flavor, which has yet to be observed.
The simple mathematical principle behind the seesaw mechanism is the following property of any 2×2 matrix
where B is taken to be much larger than M.
It has two very disproportionate eigenvalues:
The larger eigenvalue, λ+, is approximately equal to B, while the smaller eigenvalue is approximately equal to
Thus, |M | is the geometric mean of λ+ and −λ−, since the determinant equals λ+λ− = −M 2.
If one of the eigenvalues goes up, the other goes down, and vice versa. This is the point of the name "seesaw" of the mechanism.
This mechanism serves to explain why the neutrino masses are so small. The matrix A is essentially the mass matrix for the neutrinos. The Majorana mass component B is comparable to the GUT scale and violates lepton number; while the components Dirac mass M, are of order of the much smaller electroweak scale, the VEV below. The smaller eigenvalue λ− then leads to a very small neutrino mass comparable to eV, which is in qualitative accord with experiments, sometimes regarded as supportive evidence for the framework of Grand Unified Theories. 1