*** Welcome to piglix ***

Sednoid


A sednoid is a trans-Neptunian object with a perihelion greater than 50 AU and a semi-major axis greater than 150 AU. Only two objects are known from this population, 90377 Sedna and 2012 VP113, both of which have perihelia greater than 75 AU, but it is suspected that there are many more. These objects lie outside an apparently nearly empty gap in the Solar System starting at about 50 AU, and have no significant interaction with the planets. They are usually grouped with the detached objects. Some astronomers, such as Scott Sheppard, consider the sednoids to be inner Oort cloud objects (OCOs), though the inner Oort cloud, or Hills cloud, was originally predicted to lie beyond 2,000 AU, several times as far as the aphelia of the two known sednoids.

The sednoids' orbits cannot be explained by perturbations from the giant planets, nor by interaction with the galactic tides. If they formed in their current locations, their orbits must originally have been circular; otherwise accretion (the coalescence of smaller bodies into larger ones) would not have been possible because the large relative velocities between planetesimals would have been too disruptive. Their present elliptical orbits can be explained by several hypotheses:

The two sednoids, like all of the more extreme detached objects (objects with semi-major axes > 150 AU and perihelia > 30 AU; the orbit of Neptune), have a similar orientation (argument of perihelion) of ≈ 0° (338°±38°). This is not due to an observational bias and is unexpected, because interaction with the giant planets should have randomized their arguments of perihelion (ω), with precession periods between 40 Myr and 650 Myr and 1.5 Gyr for Sedna. This suggests that one or more undiscovered massive perturbers may exist in the outer Solar System. A super-Earth at 250 AU would cause these objects to librate around ω = ±60° for billions of years. There are multiple possible configurations and a low-albedo super-Earth at that distance would have an apparent magnitude below the current all-sky-survey detection limits. This hypothetical super-Earth has been dubbed Telisto and Planet Nine. Larger, more-distant perturbers would also be too faint to be detected.


...
Wikipedia

...