*** Welcome to piglix ***

Sedimentary budget


Sedimentary budgets are a coastal management tool used to analyze and describe the different sediment inputs (sources) and outputs (sinks) on the coasts, which is used to predict morphological change in any particular coastline over time. Within a coastal environment the rate of change of sediment is dependent on the amount of sediment brought into the system versus the amount of sediment that leaves the system. These inputs and outputs of sediment then equate to the total balance of the system and more than often reflect the amounts of erosion or accretion affecting the morphology of the coast.

To assess the sedimentary budget the coast has to be divided into two separate morphologies, commonly known as littoral cells and compartments. Sediment compartments can usually be defined as two rocky barriers which mark the ends of a beach and have a fixed sediment budget, although usually leaky to some extant. Littoral cells can either be free or fixed and can occupy a hierarchy of scales, from individual rip cells to entire beaches.

There are various types of natural sources and sinks within a coastal system. Sediment sources can include river transport, sea cliff erosion and longshore drift into an area. Sediment sinks can include longshore drift of sediment away from an area and sediment deposition into an estuary.

Anthropogenic activities can also influence sedimentary budgets; in particular damming of a river and in stream gravel mining of a river bed can reduce the sediment source to the coast. In contrast beach nourishment can increase sediment source.

In 1966, Bowen and Inman defined a littoral cell and separated sediment inputs, accretion by longshore drift and outputs.

Sedimentary budgets are used to assist in the management of beach erosion by trying to show the present sediment movement and forecast future sediment movement.

In order to understand the sedimentary budget of a coastal environment it is important to know the different types of feedback that can determine whether there is stability. When a beach environment is effected by wind, wave and tidal energy it responds with either positive or negative feedback which determines whether the system is balanced and in equilibrium.

Negative feedback is a stabilising mechanism acting to oppose changes to coastal morphology and establish equilibrium. A coastal environment in equilibrium is able to dissipate or reflect incoming energy without the occurrence of sediment input or output and change to morphology. For example; when a beach in equilibrium erodes during a storm it forms an offshore bar that in turn forces waves to break over it. By doing this the waves lose a lot of energy and dissipate before reaching the shoreline, significantly reducing further erosion. When the storm calms, the bar is then re-worked back on to the beach.


...
Wikipedia

...