*** Welcome to piglix ***

Sec-butyllithium

sec-Butyllithium
Skeletal formula of sec-butyllithium
Skeletal formula of tetrameric sec-butyllithium
Names
IUPAC name
sec-Butyllithium
Systematic IUPAC name
Butan-2-yllithium
Identifiers
598-30-1 YesY
3D model (Jmol) Interactive image
Interactive image
3587206
ChemSpider 10254345 YesY
ECHA InfoCard 100.009.026
EC Number 209-927-7
PubChem 102446
Properties
C4H9Li
Molar mass 64.06 g·mol−1
Acidity (pKa) 51
Hazards
Safety data sheet Fisher MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY  (what is YesYN ?)
Infobox references

sec-Butyllithium is an organometallic compound with the formula CH3CHLiCH2CH3, abbreviated sec-BuLi or s-BuLi. This chiral organolithium reagent is used as a source of sec-butyl carbanion in organic synthesis.

sec-BuLi can be prepared by the reaction of sec-butyl halides with lithium metal:

Sec Butyllithium synthesis 01.svg

The carbon-lithium bond is highly polar, rendering the carbon basic, as in other organolithium reagents. Sec-butyllithium is more basic than the primary organolithium reagent, n-butyllithium. It is also more sterically hindered, though it is still useful for syntheses.

sec-BuLi is employed for deprotonations of particularly weak carbon acids where the more conventional reagent n-BuLi is unsatisfactory. It is, however, so basic that its use requires greater care than for n-BuLi. For example diethyl ether is attacked by sec-BuLi at room temperature in minutes, whereas ether solutions of n-BuLi are stable. Many transformations involving sec-butyllithium are similar to those involving other organolithium reagents. For example, sec-BuLi react with carbonyl compounds and esters to form alcohols. With copper(I) iodide sec-BuLi forms lithium di-sec-butylcuprates. The first two reactions can also be accomplished by using sec-butylmagnesium bromide, a Grignard reagent; in fact, the latter is the typical reagent for this purpose.


...
Wikipedia

...