In the mathematical discipline of linear algebra, the Schur decomposition or Schur triangulation, named after Issai Schur, is a matrix decomposition.
The Schur decomposition reads as follows: if A is a n × n square matrix with complex entries, then A can be expressed as
where Q is a unitary matrix (so that its inverse Q−1 is also the conjugate transpose Q* of Q), and U is an upper triangular matrix, which is called a Schur form of A. Since U is similar to A, it has the same spectrum, and since it is triangular, those eigenvalues are the diagonal entries of U.
The Schur decomposition implies that there exists a nested sequence of A-invariant subspaces {0} = V0 ⊂ V1 ⊂ ... ⊂ Vn = Cn, and that there exists an ordered orthonormal basis (for the standard Hermitian form of Cn) such that the first i basis vectors span Vi for each i occurring in the nested sequence. Phrased somewhat differently, the first part says that a linear operator J on a complex finite-dimensional vector space stabilizes a complete flag (V1,...,Vn).
A constructive proof for the Schur decomposition is as follows: every operator A on a complex finite-dimensional vector space has an eigenvalue λ, corresponding to some eigenspace Vλ. Let Vλ⊥ be its orthogonal complement. It is clear that, with respect to this orthogonal decomposition, A has matrix representation (one can pick here any orthonormal bases Z1 and Z2 spanning Vλ and Vλ⊥ respectively)