*** Welcome to piglix ***

Sampling bias


In statistics, sampling bias is a bias in which a sample is collected in such a way that some members of the intended population are less likely to be included than others. It results in a biased sample, a non-random sample of a population (or non-human factors) in which all individuals, or instances, were not equally likely to have been selected. If this is not accounted for, results can be erroneously attributed to the phenomenon under study rather than to the method of sampling.

Medical sources sometimes refer to sampling bias as ascertainment bias. Ascertainment bias has basically the same definition, but is still sometimes classified as a separate type of bias.

Sampling bias is mostly classified as a subtype of selection bias, sometimes specifically termed sample selection bias, but some classify it as a separate type of bias. A distinction, albeit not universally accepted, of sampling bias is that it undermines the external validity of a test (the ability of its results to be generalized to the entire population), while selection bias mainly addresses internal validity for differences or similarities found in the sample at hand. In this sense, errors occurring in the process of gathering the sample or cohort cause sampling bias, while errors in any process thereafter cause selection bias.

However, selection bias and sampling bias are often used synonymously.

The study of medical conditions begins with anecdotal reports. By their nature, such reports only include those referred for diagnosis and treatment. A child who can't function in school is more likely to be diagnosed with dyslexia than a child who struggles but passes. A child examined for one condition is more likely to be tested for and diagnosed with other conditions, skewing comorbidity statistics. As certain diagnoses become associated with behavior problems or intellectual disability, parents try to prevent their children from being stigmatized with those diagnoses, introducing further bias. Studies carefully selected from whole populations are showing that many conditions are much more common and usually much milder than formerly believed.


...
Wikipedia

...