*** Welcome to piglix ***

External validity


External validity is the validity of generalized (causal) inferences in scientific research, usually based on experiments as experimental validity. In other words, it is the extent to which the results of a study can be generalized to other situations and to other people. Mathematical analysis of external validity concerns a determination of whether generalization across heterogeneous populations is feasible, and devising statistical and computational methods that produce valid generalizations.

"A threat to external validity is an explanation of how you might be wrong in making a generalization." Generally, generalizability is limited when the cause (i.e. the independent variable) depends on other factors; therefore, all threats to external validity interact with the independent variable - a so-called background factor x treatment interaction.

Cook and Campbell made the crucial distinction between generalizing to some population and generalizing across subpopulations defined by different levels of some background factor. Lynch has argued that it is almost never possible to generalize to meaningful populations except as a snapshot of history, but it is possible to test the degree to which the effect of some cause on some dependent variable generalizes across subpopulations that vary in some background factor. That requires a test of whether the treatment effect being investigated is moderated by interactions with one or more background factors.

Whereas enumerating threats to validity may help researchers avoid unwarranted generalizations, many of those threats can be disarmed, or neutralized in a systematic way, so as to enable a valid generalization. Specifically, experimental findings from one population can be "re-processed", or "re-calibrated" so as to circumvent population differences and produce valid generalizations in a second population, where experiments cannot be performed. Pearl and Bareinboim classified generalization problems into two categories: (1) those that lend themselves to valid re-calibration, and (2) those where external validity is theoretically impossible. Using graph-based calculus, they derived a necessary and sufficient condition for a problem instance to enable a valid generalization, and devised algorithms that automatically produce the needed re-calibration, whenever such exists. This reduces the external validity problem to an exercise in graph theory, and has led some philosophers to conclude that the problem is now solved.

An important variant of the external validity problem deals with selection bias, also known as sampling bias— that is, bias created when studies are conducted on non-representative samples of the intended population. For example, if a clinical trial is conducted on college students, an investigator may wish to know whether the results generalize to the entire population, where attributes such as age, education, and income differ substantially from those of a typical student. The graph-based method of Bareinboim and Pearl identifies conditions under which sample selection bias can be circumvented and, when these conditions are met, the method constructs an unbiased estimator of the average causal effect in the entire population. The main difference between generalization from improperly sampled studies and generalization across disparate populations lies in the fact that disparities among populations are usually caused by preexisting factors, such as age or ethnicity, whereas selection bias is often caused by post-treatment conditions, for example, patients dropping out of the study, or patients selected by severity of injury. When selection is governed by post-treatment factors, unconventional re-calibration methods are required to ensure bias-free estimation, and these methods are readily obtained from the problem's graph.


...
Wikipedia

...