SERCA, or sarco/endoplasmic reticulum Ca2+-ATPase, or SR Ca2+-ATPase, is a calcium ATPase-type P-ATPase.
SERCA resides in the sarcoplasmic reticulum (SR) within myocytes. It is a Ca2+ ATPase that transfers Ca2+ from the cytosol of the cell to the lumen of the SR at the expense of ATP hydrolysis during muscle relaxation.
There are 3 major domains on the cytoplasmic face of SERCA: the phosphorylation and nucleotide-binding domains, which form the catalytic site, and the actuator domain, which is involved in the transmission of major conformational changes.
It seems that, in addition to the calcium-transporting properties, SERCA1 generates heat in some adipocytes and can improve cold tolerance in some wood frogs.
The rate at which SERCA moves Ca2+ across the SR membrane can be controlled by the regulatory protein phospholamban (PLB/PLN). SERCA is normally inhibited by PLB, with which it is closely associated. Increased β-adrenergic stimulation reduces the association between SERCA and PLB by the phosphorylation of PLB by PKA. When PLB is associated with SERCA, the rate of Ca2+ movement is reduced; upon dissociation of PLB, Ca2+ movement increases.