|
|||
Names | |||
---|---|---|---|
IUPAC name
(2S)-2-Amino-4-[[(2S,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl-methylsulfonio]butanoate
|
|||
Other names
S-Adenosyl-L-methionine; SAM-e; SAMe, AdoMet, ademethionine
|
|||
Identifiers | |||
29908-03-0 | |||
3D model (Jmol) | Interactive image | ||
ChEMBL | ChEMBL1088977 | ||
ChemSpider | 8041295 | ||
ECHA InfoCard | 100.045.391 | ||
KEGG | C00019 | ||
MeSH | S-Adenosylmethionine | ||
PubChem | 9865604 | ||
|
|||
|
|||
Properties | |||
C15H22N6O5S | |||
Molar mass | 398.44 g·mol−1 | ||
Pharmacology | |||
A16AA02 (WHO) | |||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|||
what is ?) | (|||
Infobox references | |||
S-Adenosyl methionine is a common cosubstrate involved in methyl group transfers, transsulfuration, and aminopropylation. Although these anabolic reactions occur throughout the body, most SAM-e is produced and consumed in the liver. More than 40 methyl transfers from SAM-e are known, to various substrates such as nucleic acids, proteins, lipids and secondary metabolites. It is made from adenosine triphosphate (ATP) and methionine by methionine adenosyltransferase (EC 2.5.1.6). SAM was first discovered by Giulio Cantoni in 1952.
In bacteria, SAM-e is bound by the SAM riboswitch, which regulates genes involved in methionine or cysteine biosynthesis. In eukaryotic cells, SAM-e serves as a regulator of a variety of processes including DNA, tRNA, and rRNA methylation; immune response; amino acid metabolism; transsulfuration; and more. In plants, SAM-e is crucial to the biosynthesis of ethylene, an important plant hormone and signaling molecule.
The reactions that produce, consume, and regenerate SAM-e are called the SAM-e cycle. In the first step of this cycle, the SAM-dependent methylases (EC 2.1.1) that use SAM-e as a substrate produce S-adenosyl homocysteine as a product. S-adenosyl homocysteine is a strong negative regulator of nearly all SAM-dependent methylases despite their biological diversity. This is hydrolysed to homocysteine and adenosine by S-adenosylhomocysteine hydrolase EC 3.3.1.1 and the homocysteine recycled back to methionine through transfer of a methyl group from 5-methyltetrahydrofolate, by one of the two classes of methionine synthases (i.e. cobalamin-dependent (EC 2.1.1.13) or cobalamin-independent (EC 2.1.1.14)). This methionine can then be converted back to SAM-e, completing the cycle. In the rate-limiting step of the SAM cycle, MTHFR (methylenetetrahydrofolate reductase) irreversibly reduces 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate.