*** Welcome to piglix ***

Rooftop solar

Photovoltaikanlage.jpg
Berlin pv-system block-103 20050309 p1010367.jpg
Rooftop solar array at Kuppam i-community office (54928934).jpg
Rooftop PV systems around the world: Chicago, United States (top-right), Berlin, Germany (middle) and Kuppam, India (bottom-right)

A rooftop photovoltaic power station, or rooftop PV system, is a photovoltaic system that has its electricity-generating solar panels mounted on the rooftop of a residential or commercial building or structure. The various components of such a system include photovoltaic modules, mounting systems, cables, solar inverters and other electrical accessories.

Rooftop mounted systems are small compared to ground-mounted photovoltaic power stations with capacities in the megawatt range. Rooftop PV systems on residential buildings typically feature a capacity of about 5 to 20 kilowatts (kW), while those mounted on commercial buildings often reach 100 kilowatts or more.

The urban environment provides a large amount of empty rooftop spaces and can inherently avoid the potential land use and environmental concerns. Estimating rooftop solar insolation is a multi-faceted process, as insolation values in rooftops are impacted by the following:

There are various methods for calculating potential solar PV roof systems including the use of Lidar and orthophotos. Sophisticated models can even determine shading losses over large areas for PV deployment at the municipal level.

In a grid connected rooftop photovoltaic power station, the generated electricity can sometimes be sold to the servicing electric utility for use elsewhere in the grid. This arrangement provides payback for the investment of the installer. Many consumers from across the world are switching to this mechanism owing to the revenue yielded. A public utility commission usually sets the rate that the utility pays for this electricity, which could be at the retail rate or the lower wholesale rate, greatly affecting solar power payback and installation demand.

The FIT as it is commonly known has led to an expansion in the solar PV industry worldwide. Thousands of jobs have been created through this form of subsidy. However it can produce a bubble effect which can burst when the FIT is removed. It has also increased the ability for localised production and embedded generation reducing transmission losses through power lines.


...
Wikipedia

...