*** Welcome to piglix ***

Reverberation time


Reverberation, in psychoacoustics and acoustics, is the persistence of sound after a sound is produced. A reverberation, or reverb, is created when a sound or signal is reflected causing a large number of reflections to build up and then decay as the sound is absorbed by the surfaces of objects in the space – which could include furniture, people, and air. This is most noticeable when the sound source stops but the reflections continue, decreasing in amplitude, until they reach zero amplitude.

Reverberation is frequency dependent: the length of the decay, or reverberation time, receives special consideration in the architectural design of spaces which need to have specific reverberation times to achieve optimum performance for their intended activity. In comparison to a distinct echo that is a minimum of 50 to 100 ms after the initial sound, reverberation is the occurrence of reflections that arrive in less than approximately 50 ms. As time passes, the amplitude of the reflections is reduced until it is reduced to zero. Reverberation is not limited to indoor spaces as it exists in forests and other outdoor environments where reflection exists.

Reverberation occurs naturally when a person sings, talks, or plays an instrument acoustically in a hall or performance space with sound-reflective surfaces. The sound of reverberation is often electronically added to the vocals of singers and to musical instruments. This is done in both live sound systems and sound recordings by using effects units. Effects units that are specialized in the generation of the reverberation effect are commonly called reverbs.

The time it takes for a signal to drop by 60 dB is the reverberation time.

RT60 is the time required for reflections of a direct sound to decay 60 dB. Reverberation time is frequently stated as a single value, if measured as a wide band signal (20 Hz to 20 kHz), however, being frequency dependent, it can be more precisely described in terms of frequency bands (one octave, 1/3 octave, 1/6 octave, etc.). Being frequency dependent, the reverberation time measured in narrow bands will differ depending on the frequency band being measured. For precision, it is important to know what ranges of frequencies are being described by a reverberation time measurement.


...
Wikipedia

...