Psychoacoustics is the scientific study of sound perception. More specifically, it is the branch of science studying the psychological and physiological responses associated with sound (including speech and music). It can be further categorized as a branch of psychophysics. Psychoacoustics received its name from a field within psychology—i.e., recognition science—which deals with all kinds of human perceptions. It is an interdisciplinary field of many areas, including psychology, acoustics, electronic engineering, physics, biology, physiology, and computer science.
Hearing is not a purely mechanical phenomenon of wave propagation, but is also a sensory and perceptual event; in other words, when a person hears something, that something arrives at the ear as a mechanical sound wave traveling through the air, but within the ear it is transformed into neural action potentials. These nerve pulses then travel to the brain where they are perceived. Hence, in many problems in acoustics, such as for audio processing, it is advantageous to take into account not just the mechanics of the environment, but also the fact that both the ear and the brain are involved in a person’s listening experience.
The inner ear, for example, does significant signal processing in converting sound waveforms into neural stimuli, so certain differences between waveforms may be imperceptible.Data compression techniques, such as MP3, make use of this fact. In addition, the ear has a nonlinear response to sounds of different intensity levels; this nonlinear response is called loudness. Telephone networks and audio noise reduction systems make use of this fact by nonlinearly compressing data samples before transmission, and then expanding them for playback. Another effect of the ear's nonlinear response is that sounds that are close in frequency produce phantom beat notes, or intermodulation distortion products.