A reusable launch system (RLS, or reusable launch vehicle, RLV) is a launch system which is capable of launching a payload into space more than once. This contrasts with expendable launch systems, where each launch vehicle is launched once and then discarded.
No completely reusable orbital launch system has ever been created; however, several partially reusable launch systems have existed. The Space Shuttle was partially reusable: the orbiter, which included the Space Shuttle main engines, and the two solid rocket boosters, were reused after several months of refitting work for each launch. However, the external tank and launch vehicle load frame were discarded after each flight.
The Falcon 9 rocket is designed to have a reusable first stage; several of these stages have been safely returned to land after launch. However, as of 2016, none of these first stages have yet been reused.
Several partially reusable systems, such as Adeline and Vulcan, are currently under development; one fully reusable system, the Interplanetary Transport System, is also under development.
Orbital RLVs are thought to provide the possibility of low cost and highly reliable access to space. However, reusability implies weight penalties such as non-ablative reentry shielding and possibly a stronger structure to survive multiple uses, and given the lack of experience with these vehicles, the actual costs and reliability are yet to be seen.
In the first half of the twentieth century, popular science fiction often depicted space vehicles as either single-stage reusable rocket ships which could launch and land vertically (SSTO VTVL), or single-stage reusable rocket planes which could launch and land horizontally (SSTO HTHL).