*** Welcome to piglix ***

Rear flank downdraft


The rear flank downdraft or RFD is a region of dry air wrapping around the back of a mesocyclone in a supercell thunderstorm. These areas of descending air are thought to be essential in the production of many supercellular tornadoes. Large hail within the rear flank downdraft often shows up brightly as a hook on weather radar images, producing the characteristic hook echo, which often indicates the presence of a tornado.

The rear flank downdraft can arise owing to negative buoyancy, which can be generated by cold anomalies produced at the rear of the supercell thunderstorm by evaporative cooling of precipitation or hail melting, or injection of dry and cooler air in the cloud, and by vertical perturbation pressure gradients that can arise from, vertical gradients of vertical vorticity, stagnation of environmental flow at an updraft, and pressure perturbations due to vertical buoyancy variations (which are partially due to hydrostatic effects), respectively.

Vertical pressure perturbations are generated by the buildup of pressure due to the vertical buoyancy, creating a pressure perturbation gradient. The subsiding air is generally dry and as it subsides the air warms adiabatically and can form a clearing in the cloud cover called a clear slot. A clear slot can be observed to wrap around a tornado or form away from a tornado in the shape of a horseshoe. This clearing is most likely the formation of the hook echo region associated with tornado formation. An RFD originating in dry air warming adiabatically can produce warmer observations out of the RFD at the surface.

RFDs may present themselves as a clear slot wrapping itself at least two-thirds of the way around the tornado, but the clear slot is not always evident in all cases where an RFD is present. Many documents indicate that surface pressure excesses up to a few millibars exist within RFDs. Some findings showed that within the RFDs equivalent potential temperature (θe) is cold with respect to the inflow. Moreover, the lowest wet-bulb potential temperature (θw) values observed at the surface were within the RFD. There are, however, also observations of warm, high-θe air within RFDs.


...
Wikipedia

...