*** Welcome to piglix ***

Radical disproportionation


Radicals in chemistry are defined as reactive atoms or molecules that contain unpaired electrons in an open shell. The unpaired electrons cause radicals to be unstable and reactive. Reactions in radical chemistry can generate both radical and non-radical products. Radical disproportionation encompasses a group of reactions in organic chemistry in which two radicals react to form two different non-radical products. These reactions can occur with many radicals in solution and in the gas phase. Due to the unstable nature of radical molecules, disproportionation proceeds rapidly and requires little to no activation energy. The most thoroughly studied radical disproportionation reactions have been conducted with alkyl radicals, but there are many organic molecules that can exhibit more complex, multi-step disproportionation reactions.

In radical disproportionation reactions one molecule acts as an acceptor while the other molecule acts as a donor. In the most common disproportionation reactions, a hydrogen atom is taken, or abstracted by the acceptor as the donor molecule undergoes an elimination reaction to form a double bond. Other atoms such as halogens may also be abstracted during a disproportionation reaction. Abstraction occurs as a head to tail reaction with the atom that is being abstracted facing the radical atom on the other molecule.

Radical disproportionation is often thought of as occurring in a linear fashion with the donor radical, the acceptor radical, and the atom being accepted all along the same axis. In fact, most disproportionation reactions do not require linear orientations in space. Molecules that are more sterically hindered require arrangements that are more linear, and thus react more slowly. Steric effects play a significant role in disproportionation with ethyl radicals acting as more effective acceptors than tert-butyl radicals. Tert-butyl radicals have many hydrogens on adjacent carbons to donate and steric effects often prevent tert-butyl radicals from getting close to abstracting hydrogens.


...
Wikipedia

...